
U6. String Utility Commands
    ViewIt supports several commands that perform common string-related operations:    ViewIt supports several commands that perform common string-related operations:    
setting substrings, trimming strings, setting parameter text, converting strings from one setting substrings, trimming strings, setting parameter text, converting strings from one 
format to another, finding strings within text blocks, and interconverting strings and format to another, finding strings within text blocks, and interconverting strings and 
numbers.numbers.

Name    Number    Parameters & Variables used
SetSub    451    a,b,c,d,uString,uName
    Moves the contents of uString into uName beginning at character a of uName and ending Moves the contents of uString into uName beginning at character a of uName and ending 
at character b (i.e. sets a substring in uName).    Undefined characters are replaced with at character b (i.e. sets a substring in uName).    Undefined characters are replaced with 
spaces so that SetSub works even if uName is less than b characters in length, or uString is spaces so that SetSub works even if uName is less than b characters in length, or uString is 
smaller than the substring.    You can optionally use parameter c to pass the address of a smaller than the substring.    You can optionally use parameter c to pass the address of a 
Pascal-type source string (instead of using uString), and/or d to pass the address of a Pascal-Pascal-type source string (instead of using uString), and/or d to pass the address of a Pascal-
type destination string (instead of using uName).type destination string (instead of using uName).
    NOTE:    You can get substrings using the command GetStr described in the "String Lists"     NOTE:    You can get substrings using the command GetStr described in the "String Lists" 
topic.topic.

TrmStr    452    a,b,uString,uName
    Moves or removes leading or trailing spaces within the string uString, uName, or some Moves or removes leading or trailing spaces within the string uString, uName, or some 
other string designated by a, according to the type of adjustment specified by b.other string designated by a, according to the type of adjustment specified by b.
    a = string to adjust    a = string to adjust
        0 or 1 = uString        0 or 1 = uString
        2 = uName        2 = uName
        other = address of a Pascal string        other = address of a Pascal string
    b = type of adjustment to make    b = type of adjustment to make
        1 = removes (trims) trailing spaces        1 = removes (trims) trailing spaces
        0 = removes both leading and trailing spaces        0 = removes both leading and trailing spaces
      -1 = removes leading spaces      -1 = removes leading spaces
      -2 = moves leading spaces to end of string      -2 = moves leading spaces to end of string

SetPrm    453    a,b,c,d,uString
    Resets the four parameter text strings (^0, ^1, ^2, and ^3 items in dialogs and alerts) to Resets the four parameter text strings (^0, ^1, ^2, and ^3 items in dialogs and alerts) to 
the strings designated by a, b, c, and d where,the strings designated by a, b, c, and d where,
    0 = empty string    0 = empty string
    1 to 255 = size of substring from uString    1 to 255 = size of substring from uString
    other = address of a Pascal string    other = address of a Pascal string
If using substrings from uString, these are obtained in succession, and trimmed of both If using substrings from uString, these are obtained in succession, and trimmed of both 
leading and trailing spaces before being assigned to parameter text.    For example, the call leading and trailing spaces before being assigned to parameter text.    For example, the call 
"FaceIt(nil,SetPrm,10,20,10,30)" would set the ^0 item to the first 10 characters of uString, "FaceIt(nil,SetPrm,10,20,10,30)" would set the ^0 item to the first 10 characters of uString, 
^1 to the next 20 characters, ^2 to the next 10 characters, ^3 to the next 30 characters (= ^1 to the next 20 characters, ^2 to the next 10 characters, ^3 to the next 30 characters (= 
70 total characters of uString used).    This approach can be mixed with that of passing 70 total characters of uString used).    This approach can be mixed with that of passing 
Pascal string addresses.    SetPrm is primarily provided for those programmers who do not Pascal string addresses.    SetPrm is primarily provided for those programmers who do not 
have access to the toolbox routine ParamText, but is also useful when "writing" multiple have access to the toolbox routine ParamText, but is also useful when "writing" multiple 
parameter text items to a single string.parameter text items to a single string.
NOTE:    This command is largely obsolete now since the basic control driver used with ViewItNOTE:    This command is largely obsolete now since the basic control driver used with ViewIt
provides a more powerful "parameter text" scheme based on the use of string lists.provides a more powerful "parameter text" scheme based on the use of string lists.

CnvStr    454    a,b,c,d,uString,uName
    Converts the string designated by parameter c from string type a to type b.    Parameter d Converts the string designated by parameter c from string type a to type b.    Parameter d 
designates the total number of bytes occupied by the string variable (its "storage size") designates the total number of bytes occupied by the string variable (its "storage size") 
which is usually larger than the number of characters in the string (the "string length").which is usually larger than the number of characters in the string (the "string length").
    a = source type (0 = Pascal, 1 = C, 2 = FORTRAN)    a = source type (0 = Pascal, 1 = C, 2 = FORTRAN)
    b = converted type (0 = Pascal, 1 = C, 2 = FORTRAN)    b = converted type (0 = Pascal, 1 = C, 2 = FORTRAN)



    c = source string (0 or 1 = uString, 2 = uName, other = string address)    c = source string (0 or 1 = uString, 2 = uName, other = string address)
    d = source string storage size (0 ≤ d ≤ 256 bytes)    d = source string storage size (0 ≤ d ≤ 256 bytes)
            (if d = 0, ViewIt assumes d = 256 bytes)            (if d = 0, ViewIt assumes d = 256 bytes)
CnvStr preserves all fRec scratch variables, so you don't need to worry about it clobbering CnvStr preserves all fRec scratch variables, so you don't need to worry about it clobbering 
other values in fRec.other values in fRec.

FndTxt    455    a,b,c,d,uResult
    Searches within the text block defined by a and b for the string defined by c and d.    Note 
that the text block must be locked in memory during the search since FndTxt can move heap
memory.    uResult returns the position of the found string as a byte offset from a, or -1 if not 
found.
    a = address of text block to search
    b = size of text block to search (bytes)
    c = address of search text
    d = size of search text (use -d for case sensitive search)

NumToS    471    a,b,c,d,uString
    Converts a number from the variable designated by b to the string designated by a, using Converts a number from the variable designated by b to the string designated by a, using 
the format indicated by c and d.    Infinities will appear as the character "∞".the format indicated by c and d.    Infinities will appear as the character "∞".
    a = destination string    a = destination string
        0 = uString        0 = uString
        other = address of a Pascal string        other = address of a Pascal string
    b = source of number (as a data type)    b = source of number (as a data type)
        1 = uI1        5 = uR4        1 = uI1        5 = uR4
        2 = uI2        6 = uR8        2 = uI2        6 = uR8
        3 = uI4        7 = uR10        3 = uI4        7 = uR10
        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")
    c = format    c = format
        0 = general (= fixed point unless very large or small)        0 = general (= fixed point unless very large or small)
        1 = floating point        1 = floating point
        2 = fixed point        2 = fixed point
    d = digits (use -d to also trim trailing decimal zeroes)    d = digits (use -d to also trim trailing decimal zeroes)
        if c = 0 or 1, d = significant figures (-4 used if d = 0)        if c = 0 or 1, d = significant figures (-4 used if d = 0)
        if c = 2, d = decimals to display        if c = 2, d = decimals to display

C & Pascal Programmers:    The "FaceStorXC" files declare uR8, uR10, and uR12 as arrays of C & Pascal Programmers:    The "FaceStorXC" files declare uR8, uR10, and uR12 as arrays of 
2-byte integers:2-byte integers:
 short    uR8[4]; short    uR8[4];
 short    uR10[5]; short    uR10[5];
 short    uR12[6]; short    uR12[6];
The "FaceStorXP" files define these variables similarly:The "FaceStorXP" files define these variables similarly:
 uR8 : array [1..4] of integer; uR8 : array [1..4] of integer;
 uR10 : array [1..5] of integer; uR10 : array [1..5] of integer;
 uR12 : array [1..6] of integer; uR12 : array [1..6] of integer;
The reason that these fRec elements are defined as integer arrays is that we needed to The reason that these fRec elements are defined as integer arrays is that we needed to 
ensure that the size of these variables was always 8, 10, or 12 bytes, respectively, but could ensure that the size of these variables was always 8, 10, or 12 bytes, respectively, but could 
not use "double" or "extended" since the meaning of these depends on both the compiler in not use "double" or "extended" since the meaning of these depends on both the compiler in 
use and on compiler options (see the "Numbers" topic in the "About Compilers" program for use and on compiler options (see the "Numbers" topic in the "About Compilers" program for 
more information about this issue).more information about this issue).
    To work with uR8, uR10, and uR12, you will either need to "fix" the "FaceStorXY" file to     To work with uR8, uR10, and uR12, you will either need to "fix" the "FaceStorXY" file to 
declare these variables using numerical types corresponding to 8, 10, and 12-byte reals, or declare these variables using numerical types corresponding to 8, 10, and 12-byte reals, or 
type cast these variables to the proper types in expressions involving real numbers.    The type cast these variables to the proper types in expressions involving real numbers.    The 
following lines, for example, will not compile due to a type mismatch,following lines, for example, will not compile due to a type mismatch,
    uR10 := myReal;    uR10 := myReal;
    myReal := uR10;    myReal := uR10;



but can be quickly fixed by applying type casts,but can be quickly fixed by applying type casts,
    extended(uR10) := myReal;    extended(uR10) := myReal;
    myReal := extended(uR10);    myReal := extended(uR10);
which assumes, of course, that the compiler is interpreting "extended" as a reference to a which assumes, of course, that the compiler is interpreting "extended" as a reference to a 
10-byte real, and that the program variable "myReal" can be assigned or assigned to a 10-byte real, and that the program variable "myReal" can be assigned or assigned to a 
variable of type extended.variable of type extended.

SToNum    481    a,b,uString,uResult,fI1Err...
    Converts a string designated by a to an integer or real number in the variable designated Converts a string designated by a to an integer or real number in the variable designated 
by b.    The "∞" character can be used in strings to represent infinities.    Leading and trailing by b.    The "∞" character can be used in strings to represent infinities.    Leading and trailing 
spaces are ignored.spaces are ignored.
    a = source string    a = source string
        0 = uString        0 = uString
        other = address of a Pascal string        other = address of a Pascal string
    b = destination variable (as a data type)    b = destination variable (as a data type)
        1 = uI1        5 = uR4        1 = uI1        5 = uR4
        2 = uI2        6 = uR8        2 = uI2        6 = uR8
        3 = uI4        7 = uR10        3 = uI4        7 = uR10
        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")        4 = uI8        8 or 12 = uR12    (12 = THINK C "universal")
If no error occurs, then uResult is set equal to zero, else uResult returns -1 and the variable If no error occurs, then uResult is set equal to zero, else uResult returns -1 and the variable 
(uI1...uR12) is set equal to the corresponding error value in fRec (fI1Err... fR12Err).    The (uI1...uR12) is set equal to the corresponding error value in fRec (fI1Err... fR12Err).    The 
default error values are zero, but these can be changed at any time to other values if you default error values are zero, but these can be changed at any time to other values if you 
prefer a special non-zero value returned when an error occurs.prefer a special non-zero value returned when an error occurs.
    Conditions causing an error include an empty string or a string that cannot be evaluated     Conditions causing an error include an empty string or a string that cannot be evaluated 
as a number (an NAN).    A number that is out of the range of values represented by the as a number (an NAN).    A number that is out of the range of values represented by the 
destination variable's numerical type is either set equal to the maximum or minimum destination variable's numerical type is either set equal to the maximum or minimum 
integer (for integer types), or to ±∞ or 0 (for real types).integer (for integer types), or to ±∞ or 0 (for real types).
C and Pascal Programmers:    See note above accompanying NumToS that describes type-C and Pascal Programmers:    See note above accompanying NumToS that describes type-
casting that may be needed if working with uR8, uR10, or uR12.casting that may be needed if working with uR8, uR10, or uR12.


